
PMM U.S.S.R.,Vo1.44,pp.229-235 

Copyright Pergamon Press Ltd.1981.Printed in U.K. 

0021-8928/81/Z 0229 $7.50/O 

UUC 539.3:534-l 

PRECRITICAL EQUILIBRIUM OF A THIN SHALLOW SHELL OF 
REVOLUTION AND ITS STABILITY* 

L. S. SRUBSHCHIK 

A foundation is given for asymptotic expansions for the axisynuaetric precritical 

equilibrium of a very thin elastic, strictly-convex, shell of revolution with fixed 
clamping of the edge, and for the derivation of an asymptotic estimate for the 

critical load for the loss of stability of this equilibrium for axiswrmetric shell 
buckling. The question of the domain of applicability of the form& for the 

asymptotic values of the upper critical loads /1,2/ obtained by the boundary layer 

method is discussed. 

1. On the formulation of the 
axisymmetric deformation of thin shallow 

conditions 

1 
ePAv--12 

2 
+ 8~ = 0, c2 Au + uv - CIV + 

problem. Considered is a system of equations of 

elastic shells of revolution /3/ with the boundary 

q(r) =O, A( )=-r&-f-$ (1.1) 

0 

0 < - a?, a = const > 0, er = ha-1 112 (1 - vs)]-*/I 

B u 
F?T I.4 

<co, -$-+v] 
1 ?=I= 0. [$+(f++],&=o. k>O (1.2) 

where k is the coefficient of elastic clamping of the edge in a fixed wall. For k=O and 

k=cm, respectively, (1.2) corresponds to fixed hinged clamping and absolute clamping of the 

edge. All the quantities in (1.1) and (1.2) are dimensionless and associated with the dimens- 

ional relationships mentioned in /l/. No constraints are imposed on the sign of the trans- 

verse pressure q(r). 

Asymptotic expansions 

V--VeG i$ei]vi(r)+hi(f)]I u - & E 2 a’[% (r) + gi @)I , t = (1 - r) e-l, v, = 1$3-l, un = 0 (1.3) 

are constructed according to /l/ for the equilibrium modes in the precritical stage. Here 

vi* ui are determined from the algebraic systems 

Bui -'/~~+~i~~Mj + Avi-~=U, J iurvj--i + AMi-,= (1.4) 

where u_1 = v_1 zo. The edge effect functions hi,gi are found successively from the equations 
with the boundar_! conditions 

'I," + Ki (rlig0 - 00) = thi_l + &-I + X 
a+j+9.=1 

tkhj - 1/*m+2 ,gdm + 
es. 

(1.5) 

2 t%$g,,- 8 f'U&,gf=Filr 
!+p=i k+l+j=i 

gi" - ni (hi&TO -t g$h,) + k% - %(I) gi = tgi-1 + gL, + k+jF3=i tkgj + 

2: h,,,g,, -;- x u,,,,t’h,, - 2 W’k,, -j- 2 
wp,4 ,n~++pzi I&f-p-G k+l+pm=i 

u~;t’gp~FFif 

1 
1,1 # 0, n # 0. I' + i; Ilo = 2, ni : 1 (i > 1) 

(0;. I,,,,(, L’,,,[} = 9 $ 18. LI,t,, L’j,,]r;:I. I= 0, I, 2, . . ., ( )’ = d ( )ldt* {hi, g~)~~-l-r~ = 0 

h;‘(lJ) == 1 d”i-1 7 - vr+ I,=, - vhi-1 (O), k-1 = g-1 = 0, [gi’ - kg,],, = [* + vui_1 + ktti]l=l + pgcl(O) (1.6) 

For i = 0 the problem (1.5),(1.6) has the trivial solution h, = g, s 0, from which no new solu- 

tions branch off for 'po = CP (I) < 2 8," since the corresponding linearized problem has no 
eigenvalues. In this case, we have a system of linear differential equations with constant 

coefficients to determine hi,gi for i > 1 . In particular, for i = 1 we find 

h,=$[a(+-+)r ;-b($++Z)y] gl=+[(1-+)z+$], z,=Za+k(-08,)~‘1: (1.7) 

_ 
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zr=:e-O1sinbt, y=e-eos bt, 7=Lg_$)‘/? / 

0,=8(l), a=(?$)‘:z, b=(v)‘i’, cp(l)<2&,2 

(The misprints in (2.5) and (2.9) from /l/ are eliminated in (1.5) and (1.7)). For k _z 0 
and k=oo, formulas (1.7) go over into the corresponding formulas (2.9) from /l/. It is 
easy to establish by induction that h,,g, consist of linear combinations of elements of the 
form 

tm exp [- (j .- m) (a f ib).t.l, m = 0, 1, . . . , n - 1; i = v-1 (1.8) 

m<j=l,2, . . . . n; rp (1) /0*2 < 2 (1 - 6), s = a (1) 

The asymptotic expansions (1.3) constructed are formal in nature and correspond to pre- 
critical equilibrium only under definite conditions. A foundation is given below for the 
asymptotic as E-+0. For simplicity in the exposition, only the limit cases k=O and 
k = 03 are considered, i.e., the boundary conditions 3) and 4) in (1.21 from /l/. 

2. Foundation for the asymptotic. There results from a sequential analysis of 
the problems (1.4) 

Lemma 2.1. Let M > n, cp (r) = cpl (P), ‘p (0) := 0 and 2 (r) = z1 (r’) I where the functions 
Tip1 (s), z1 (s) are, respectively, continuously differentiable M-t_ 2 and M f 3 times. Then the 
solutions of the problems (1.4), the functions Ui,Ui , are twice continuously differentiable 
for O<r< 1 and the following relationships hold 

u?~+~ = uzh+, = 0, k 0, 1, . . , I$ (n - f)J; U$&. = 0 (r) 

vz* = 0 (t), AlQ -=-. 0 (r2), AULB = 0 (P), k =- 0, 1, . . . , In i zt 

Let us introduce the notation 

qn = q (r) 8-l (r) -I- es2 (r, E), *% := =a1 (r, e) 
(2.1) 

Here ai, Pi are infinitely differentiable monotonic functions of exponential order of small- 
ness in e , where pi (r) = --gi (e-l), CL~ (r) .= --hi (E-l) for 0 +< r 0 0.1 and [S; (r) ai (r) 5 0 for 
0.2 <r < 1 , while the arbitrary sufficiently smooth functions rl(r) and yz(r) satisfythe 

relationships 

lylir, rz/rir-o<-Y [J$- V~B]i;I=Yhn+,(0)r [~i-Yvl]~,=--~,+i(o). ?V,=n~:-l. k=O 

If k =- m, the N, 7 n and y, E 0. The functions (FiBi, e"%) and (vl, yz) , respectively, 
cancel the residuals in satisfying the boundary conditions (1.2) for t' 0 and r-- 1 for 
the expansion (u,, 0,). Consequently, rp,>*= satisfy all the boundary conditions of the prob- 
lem exactly and the following estimates hold 

x=0, I,2 
(2.2) 

whexe z = uE -_B or 2. --v~-~(Pn. Here, as everywhere in Sect.2, mi,Ci are certain positive 
constants independent of r and E; the maximum is always taken for (1 q* rG 1. 

MOreover, by applying Lemma 2.1, the relationships 

(2.3) 

and analogous estimates for hi, we have the inequalities 

I vn - cpo-” 1 d m2rc, I ** 1 < m,re, 1 ‘pB-’ j c< m+r (2.4) 

Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied, E-+0, and let 6, be an 
arbitrarilysmallpositive number independent of a, 6, = o (I). Then for Q<4-82 , the fol- 
lowing estimates hold for (4)n,$nf: 

F,(r, E) z e2Avn - 'I, qn2 i- &Pn = 0 (rs”+‘) , F, (r, E) = E”A$, + (I)~$, - Ocp, -t ‘p (r) -_ 0 (&+I) (2.5) 

(I F, (r, E) 1 < m, rd’+‘, I Fg (r, E) 1 < mGntl) 
Proof. We substitute ($+1;) into (In+;! and we obta$ by using (1.4) : 

F, (T, E) _ 2 e'+aAhi" - 2 Em+%"&o - I/:! 2' e'+'Egfgk" + (2.61 
i-l ll1fk=1 j+k==8 
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N. 
e 2 ekgl;” -t- &n+sAy, f e”+‘YI - emu,,,- i k 

k=l k=l e gk” + e - ‘f2ent1y, 
ml1 

1 

gk’ = gk + $k, hk" = hk + Qk, f < m < n, 1 < i, k < N, 

The expression for F,(r,e) is analogous in form. We consider the right side of (2.6) for TE 
IO, 0.25) . We note that for yi = gi" or Yi=hi'the foll owing relationships hold 

(2.7) 

Now, by using (2.3) and (2.7) and taking into account that hiygi together with their derivativ- 
es tend more rapidly to zero than any power of 8, on the segment [0,0.25) of the boundary layer 
for Q<4--sz=, we establish (2.5). For r E 10.25,11 , the estimate (2.5) results from (2.6) 
after going over to the variable t by using (1.51, (1.6), and estimates for the elements of 
the form (1.8). 

Theorem 2.1. Let the conditions of Lemma 2.1 be satisfied for M> 7(M = N + 4), let 
e-to and let 6 be an arbitrarily small positive number (6 = o(1)) independent of e, and 

max [cp (r) IV (r)l< 2 (I-- 6) (2.8) 

Then there is an e, such that for 0 (e (e, and a sufficiently small neighborhood of the 
asymptotic expansions (ue,~) from (1.3), there exists a unique solution (v,u) for each of the 
problems (l.l), (1.21, where the estimates 

max 1 v-v, [<me”+‘, max 1 u - ue [<me*+' (2.9) 

are valid for n=O,l,...,N. Moreover, we have for n=N+j(j=1,2,3,4) 

max Iv-v, I<meNtl. max 1 u - yl <nse%+I 

Proof. We apply the method of giving a foundation to the asymptotic which has been 
developed in /4,5/. We will consider the problem (1.1) and (1.21 as an operator equation 

P (V) = 0, v s (v, u) (2.10) 

Here V is the solution and the operator &' is determined by the left side of the system (1.1) 
and acts from the sapce X, the closure of the set of smooth vector-functions V r(v,u) satis- 
fying the boundary conditions (1.1) and (1.2) in the norm 

to the space Y which is the vector-function V with the finite norm 

IIV,I:=~~u~+n~~dr=II~/la+II~Il* 
0 

According to /4,5/, to give a foundation to the asymptotic it must be proved that as 
e-+0 the following inequality is satisfied 

II p We) IIY II [@vJ II&, II p” Il(x+x+Y), <‘/a (2.11) 
where V, -((cp,,$,,) are the asymptotic expansions, 
V, 

Pv, is the Fr&het derivative on the element 
and P" is the second derivative of the operator P. 

Lemma 2.3. Let the conditions of Lemma 2.2 be satisfied. Then the following estimat- 
es hold 

II p (V,) IIY Q clentl, II P” II < ~3, V, = (cp,, q4 (2.12) 

Lemma 2.4. Let the conditions of Theorem 2.1 be satisfied. Then the following esti- 
mate holds 

II [Pv,l-'Il(r+x,< GE-* 
(2.13) 

Proof. Let us consider the system of equations 

where P,, is the Frdchet derivative on the element V,. 
Fort k= CO we multiply the first equation in (2.14) by V- 24-611 and the second by US. 

ez. Combining and integrating by parts and taking the boundary conditions into account, we 
find 

? 
&21& (2 - 6)1, + el, :m 5 im I, - E% (i)u'(l) = \ [fl(V - 2u + 6u) t f%(U + ev)] dr (2.15) 

b 
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I, = 8 s Is+3 i- (2 - 6) s>u* + eSp + &v*] dr, I, = E* (6 -+ e - 2) j (rdd + .+) dr 
II 0 

Let us note the following inequalities 

e%'(i) < e'l'm,I, + e’lTm,I,, ) I, 1 < ma (e’k, + E”‘Y& I 1, I d J%E VI + 813) (2.16) 

1 I‘ 1 < e’ (I - v‘s) II, mx = eo-’ max (W-l) 

~=e,-‘mar((e~+2e’~~~e’~), m,=‘/,maxI(pe-*I, m4 = 2 Imax w-1 (Is, I + 1 sp I)], e <Ii, 6 

In order to estimate the component v(i)~'(i), we multiply the second equation of (2.14) by ru', 
integrate between 0 and i and apply the CauchpBuniakovskii inequality, We consequently ob- 

Finally, using (2.16) and (2.17), we have from (2.15) 

Hence e satisfies the condition 

e'J'(m, + Ins + In&?. + mzm,+ 6% + @m,m,) <6 

Applying (2.8), we obtain an estimate from (2.18) 

mar I u I + max I u I< rn&'Uf j/Y (2.19) 

Now, (2.13) is derived from (2.14) analogously to /5/ by using (2.19). 

In the k=O case, the estimate (2.13) was obtained in /l/ for the particular case of 
e = --k, cp (r) = I/&. In the general case, we multiply the first equation of the system (2.14) 
by 6,~ - U, and the second by 6,u+v, where 8, is some small positive number. Integrating 
between 0 and 1, and adding, we obtain 

(The misprint in (5.7) from /l/ is eliminated here, where G,s~uv+ sltP should replace 

QUV+S~WU in an integrand of the form I,). Applying the estimate 

1171 d moe (II + I,), m, = max [(I s1 I + 1.5 is1 I )0-v 

I + /I u II) 

where e satisfies the conditions 

4m,e"' < 8,, (2v + 6,)n# < 40,= 

Setting b I and taking 

V, II< ~IS?-~ is valid. Wow by applying the triangle inequality, we obtain the estimate (2.9) 

analogously to /5/. 

3. Asymptotic estimates for the upper critical load. Lower estimates for the 
asymptotic value of the upper critical load result from Theorem 2.1 for axisymmetric snapping 

of shells with fixed clamping of the edge. For simplicity, we assume that the load functions 

depend on one parameter p, i.e., (~(r,p) and (p(r, 0) = 0. 

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied, let E +O and let fi 

be an arbitrarily small positive number (l(fi2): ",~:'lsf:~~~~d:~,'q~~l~~t~ Then the upper critic- 

al value p* /l/ for the problem (l-l), . ’ ’ 
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max Icp (r, p*)O-z($l> 2 (1 - S) 
The theorem follows directly from the fact that a unique solution exists in the neighbor- 

hood of V, under the condition (2.8). 
After the work of A. V. Pogorelov , it is well known that sufficiently thin, strictly- 

convex, shells can buckle with the formation of local dents far from the edge ("principle B * 
/6/, and also see /7-g/). A kind of buckling which corresponds to local buckling of the 
shell near the edge is considered in the author's papers /1,2/. Hence, the critical values 
mentioned in /1,2/, should be considered as asymptotic values of the upper critical loads of 
local buckling near the edge under the assumption that the number of azimuthal waves does not 
increase too rapidly as s-0. In the general case these loads only yield an asymptotic upper 
estimate fortbeuppercriticalload,which is defined as the lowest branch point. When the 
local dents are not formed successfully, the upper critical load is not only estimated but is 
determined exactly by the critical buckling load in the edge effect zone. This case holds for 
the axisymmetric deformation of a spherical shell under uniform external pressure for a mov- 
ing hinged support and sliding clamping of the edge, as well as in the case of fixed clamping 
of the edge /9/, when local dent formation occurs with the buckling of any part within the 
shell and on the edge for asymptotically coincident values of the pressure. Therefore, (4.4) 
in flf should be used when the function (pOz has a maximum for r= i. 

In the general case, when the maximum of 'p%-8 is reached within the domain at a 
point r*, and the dent is not small (r 2 r,, r*e-‘> 1, local buckling starts far from the 
shell pole), the asymptotic formula 

sup, (c~(r, p*) 02(r)) = 2 (3.1) 

is formally obtained in /9/ for the upper critical load for the problem (l.l), (1.2). 
In the case of the smoothness of m02 , Theorem 3.1 assures that this formula yields an 

exact lowerestimate for p*when the mentioned maximum is reached for O<r<l. 
Moreover, let the subscripts j = l-4 correspond to the boundary conditions 1) -4) in 

(1.2) from /l/. Then for the boundary conditions 1) and 2) the upper critical load !J,* (as 
the lowest branchpoint as e-+0) is determined by the formulas 

C2,* = min (p*, pj*), j = 2, 2 (3.2) 

where pi* and pz* are determined from the relationships /l/ 

Cp (1, PI*)&" (1) = 0.3965, 'p (1, I)$*)@" (1) = 0.8835 

Let us present examples of the numerical computations for spherical shells (0 :- -r) sub- 
jected to loads varying along the radius. Let 4 = 4p (1 - r*). For b :- 30,75,150,250 in 
cases 1) -4))‘ we have for the critical values, respectively, 
p: 

plC G.- O.366, 0.1-184, 0.390, 0.392; 
= 0.780, 0.843, 0.864, 0.872; ps,sC = 1.052, 1.010, 1.005, 1.003. These results agree well with (3.1) 

and (3.2) which yield the asymptotic values pl'(m) =O.%%, pa'(w)= 0.883, &,re (m) = i-00* The 
numerical results for plE are given in /lo/ for b< 12 . Let p = 4pr'. Then the numerical 
computations for the critical values pjc yield up to a 5% discrepancy from the asymptotic val- 
ues for i = 1,2,3,4 , respectively, when 6> 20, 40, 100, 400. Here, for fixed clamping of the 
edge ps,,"(b) slowly emerge on the asymptotic. 

Both symmetric and nonsymmetric (with a different number of azimuthal waves) buckling 
modes can correspond to the upper critical load when nonaxisymmetric deformations are taken 
into account /lo-131. The result depends in a sufficiently complex manner on the shell shape 
and the pressure distribution (*f. As an example of nonaxisyaanetric buckling, we mention 
spherical shells with one of the following pressure distributions 4psio(nrI2), 4prm,4p(1 + T”‘), 
m = 2, 4. In these cases the numerical and asymptotic computations by using (1.3) and (1.7) 
show that the critical buckling loads in the nonaxisymmetric modes pp are less than the cor- 
responding axisymmetric buckling loads 0; . Meanwhile, both axisymmetric and nonaxisymmetric 
buckling modes are possible under the external pressure 4p(1 -cd) ,depending on the parameter 
o! , as follows from the results presented. For O.O<a< 1.0 buckling occurs in axisymmetric 

modes, where pa.ac (m) = 1.0. Here uI* = lim n? I b2 as 

Table. 1 R--t 00, b-t cu. 

P&W 
1 

0. I&) (1% 
* 

P:W 01 
4. Shallow spherical shell under uniform ex- 

0.1 1.0 0.793 0.813 0.912 0.705 
ternal pressure. As is known, the critical pressures 

0.2 1.0 
of uniformly loaded spherical shells are defined 

0.807 0.588 1.03G 0.644 formulas 
by the 

0.3 1.0 i.025 0.510 1.i70 0.580 

bs= vt/iZ(l- v*)& (4.1) 

_- - --~- __ 
*) See /2l./ as well as the paper by Berrnus, I. M. and L. S. Srubshchik, "Application of numer- 
ical and asymptotic methods to compute the upper critical loads of elastic spherical shells". 
Rostov Univ., 1979. VINITI Dep. No. 2378-79 
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where h is the shell thickness, R is the sphere radius, a is the radius of the reference 

outline, v is the Poisson ratio, and E is Young's modulus. Values of qi (b) have been calcul- 

ated by many authors for axisymmetric buckling and are found in /lo/ for b< 60 when i- 1 

and b<42 when i 2, 3, 4. For large b the critical pressures emerge on the asymptotic 

values /6,1/ 

q1 (00) = 0.198, q2 (m) = 0.442, q3 (m) = qa (cm) = 1.0 (4.2) 

Numerical computations of the upper critical loads were performed for b < 300 on the 

BESM-6 computer to determine the limits of applicability of the asymptotic. 

The numerical program was compiled by means of a modified algorithm from /13/ and was 

checked for b<42 by a comparison with the results in /lo/. The value of q at which a change 

in sign of the function 

N 
’ 

det (“i + AiQi-1) 
1 det (Hi - AiQi_1) I det CC + HQN - GQN_,QN) 

i=z 

occurred in the interval (qi,qi + Aq) where Aq < 10-*, was taken as the critical value Qi , 
where the notation of /13/ is conserved. Part of the values qnO = 104 x' q,,(b) found for v = 0.33 

are shown below 

For mobile clamping of the edge (i := 1,2) the discrepancy between 

Table.2 the numerical and asymptotic values /l/ does not exceed 5% for b>20 
and 1% for b > 100. For fixed hinge clamping, this discrepancy is 

b 60 100 GO 250 
q; 1945 195s 

not more than 4% for b > 45 and 1% for b > 150, and in the case of 
1965 1970 

q; 4843 4816 
complete clamping of the edge /6/ is not more than 5% for b> 30 and 

4393 4405 

q; 9722 9845 
1% for b > 85. 

9900 9942 

4; 

Let us note that axisymmetric buckling is, as a rule, associated 

9829 9996 1oooO 9985 with the snapping phenomenon in this problem, i.e., the critical valu- 

es are limit points. The merger points qa (b) for b, =: 8.348, bz = 14.987, 
detected in /14/, are the exception. Investigation using the alignment method showed that 

qI(b,) and qr(b,) are bifurcation points. (An analogous investigation was not performed for 

b > 15 ). 
These results from Theorems 2.1 and 3.1 for uniformly loaded spherical shells 

Theorem 4.1. Let s--t0 and 0 I-: --hr, h -7 a/R, q(r) r 'i, q?. Then for an arbitrarily 

small S> O(6 = o(1)) there is a value of El such that for O<s<s, the upper critical 

pressure CJ* in the problem (l.l), (1.2) satisfies the inequality q* > 4h" -6. Hence for all 

q <4A2 --6 in a sufficiently small neighborhood UE, UE of (1.3) only one solution exists 

and for n = 0,1,2, . the following estimates are valid 

max 1 u - ve 1 < men+‘, mar 1 u - uE 1 < f7~“+~ (4.3) 

The inaccuracy the author made in formulating this theorem in case 3) in (1.2) (see /l/, p. 

712) is eliminated here. Instead of 6 : 0(s) in /l/ there should be 6 -. o(1). 

Let us note that (4.3) improves the analogous estimate (5.2) in /l/ in case k=O . For 

k>O in (1.2), the theorem is formulated for the first time. The author does not know of a 

rigorous prooffortheupperestimate for q,(m) and sr(m). 
By using the Marguerre-Vlasov equations in the problem of a uniformly loaded spherical 

shell under hard framing of the edge, Huang /ll/ evaluated the critical pressures pH (W at 
which the axisymmetric equilibrium mode can be buckled into the nonaxisymmetric mode. In 

particular, as b-m, IL--~CC, the appropriate asymptotic value was found pzI (33) := 0.810 p1 (Pi, 

&-ass 0 -0.728, where n is the number of the eigenfunction harmonic corresponding to the 

value pH(b) (here the corrected value of pfr(m) is presented /12/j. Let us also note that 

the values of pa(m) are given in /21/ as a function of k. 
The experimental data /15/ turned out to be close to the Huang critical loads, however, 

they do not yield favorable results for nonaxisymmetric theory. In fact, according to com- 

putations /ll/, buckling for h ,, 5.5 should be nonaxisymmetric in nature, and the number ,i 

(waves in the azimuthal direction) should grow together with 6, and in experiments /15/ six 

out of nine shells had an axisymmetric mode after the experiment for b>5.5 ) and the remain- 

ing three with nL 1 could be inelastic, as is shown in /16/, under loads close to the critic- 

al values. Moreover, all the shells tested in /15/ did not satisfy the shallowness criterion. 

Later more precise experiments /16--O/ did not confirm the Huanq theory, but displayed 

good agreement with existing symmetric theory. In particular, it the experimentally observed 

phenomenon of an axisymmetric edge effect is described in /20/. 
The clarification of the reasons for such a disagreement between the experimental data 

and the results of the theory requires additional investigations. 

The author is grateful to V. I. Iudovich for discussing the research. 
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